
NASA Technical Memorandum 4489

Open Environments To Support
Systems Engineering Tool
Integration: A Study Using
the Portable Common Tool
Environment (PCTE)

Dave E. Eckhardt, Jr., Michael J. Jipping,
Chris J. Wild, Steven J. Zeil, and Cathy C. Roberts

SEPTEMBER 1993

NASA Technical Memorandum 4489

Open Environments To Support
Systems Engineering Tool
Integration: A Study Using
the Portable Common Tool
Environment (PCTE)

Dave E. Eckhardt, Jr.
Langley Research Center
Hampton, Virginia

Michael J. Jipping
Hope College
Holland, Michigan

Chris J. Wild and Steven J. Zeil
Old Dominion University
Norfolk, Virginia

Cathy C. Roberts
Institute for Computer Applications
in Science and Engineering
Langley Research Center
Hampton, Virginia

The use of trademarks or names of manufacturers in this

report is for accurate reporting and does not constitute an

o�cial endorsement, either expressed or implied, of such

products or manufacturers by the National Aeronautics and

Space Administration.

Acknowledgments

We appreciate the help of David Green from Lockheed En-

gineering and Sciences Corporation, who installed and main-

tained the PCTE software, and Kathryn Smith, Denise Jones,

Carrie Walker, and Steve Young fromLangley, who provided in-

house expertise with the three tools used in this study. We also

want to thank John Turkovich of the Charles StarkDraperLab-

oratory, Inc., who provided anASCII representation of the data

ow diagrams produced by CSDLCASE.

Abstract

A study of computer engineering tool integration using the Portable
Common Tool Environment (PCTE) Public Interface Standard is pre-
sented. Over a 10-week time frame, three existing software products
were encapsulated to work in the Emeraude environment, an imple-
mentation of the PCTE version 1.5 standard. The software products
used were a computer-aided software engineering (CASE) design tool,
a software reuse tool, and a computer architecture design and analysis
tool. The tool set was then demonstrated to work in a coordinated design
process in the Emeraude environment. This paper describes the project
and the features of PCTE used, summarizes experience with the use
of Emeraude environment over the project time frame, and addresses
several related areas for future research.

Introduction

Background

With the rapid development of digital process-
ing technology, NASA programs have become in-
creasingly dependent on the capabilities of complex
computer systems. Current
ight control research,
which advocates active controls (ref. 1) and fully in-
tegrated guidance and control systems (ref. 2), re-
lies heavily on digital processing technology. These
advanced guidance and control systems, designed
to optimize aircraft performance, will demand high-
throughput, fault-tolerant computing systems. Addi-
tionally, safety concerns will dictate that future gen-
erations of commercial aircraft have hardware and
software systems with extremely low failure rates
such that catastrophic failures are extremely improb-
able, that is, such failures are \not expected to occur
within the total life span of the whole
eet of the
model (ref. 3)." The functional performance, relia-
bility, and safety of these systems are of great impor-
tance to NASA; thus, a component of the research
within the NASA Aeronautics Controls and Guid-
ance Program is directed toward the development of
design, assessment, and validation methodologies for

ight-crucial systems (ref. 4). An important aspect
of this work is developing the engineering tools that
support cost-e�ective certi�cation of future
ight
systems.

The state of the art of this technology was a pri-
mary issue of discussion at a workshop on digital
systems technology held at Langley Research Cen-
ter. The consensus of this representative sample of
the U.S. aerospace industry was that there is a \lack
of e�ective design and validation methods with sup-
port tools to enable engineering of highly integrated,

ight-critical digital systems (ref. 5)." Design meth-
ods are generally fragmented and do not support in-
tegrated performance, reliability, and safety analysis.

There is a growing recognition that such integrated
studies will require an integrated design and evalua-
tion environment. A primary purpose of such an en-
vironment is to achieve a level of integration of the di-
verse support tools used in the system development.
Ideally, the environment is \open," as distinguished
from \proprietary," in which case the integration of
foreign tools is di�cult at best.

The integration function of a computer-aided
software engineering (CASE) environment can be
split into three areas: data, control, and presenta-
tion integration (ref. 6). In addition to these areas,
a fourth area, which deals with process integration,
is emerging as a critical functionality that can also
be provided by the environment (ref. 7). Data in-
tegration can be achieved by exchanging data be-
tween tools directly or by storing the data in a shared
project directory. A central repository for project in-
formation facilitates con�guration management and
tends to de�ne project information structures that
are independent of the speci�c tools used to manip-
ulate this information. Control integration allows
tools to coordinate their activities to maintain con-
sistency between the information managed by each
tool. A well-known example is the UNIX make�le

system, which ensures that an executable program is
generated from the latest versions of the source code
and the \include" �les. The purpose of presenta-
tion integration is to provide a uniform user interface
to the services provided in the environment. Pro-
cess integration deals with supporting the dynamics
of software development by de�ning, managing, and
certifying the set of activities across the software life
cycle.

Generally, the two approaches used to achieve
tool integration are tool collections and an inte-
grated project support environment (IPSE). The tool
collection approach represents the state of practice.

Operating System

Data Repository

Data Integration Services (Language Interface)

Tool Slots

Task Management Services

User Interface

Mes
sa

ge
 S

er
ve

r N
etw

or
k

Figure 1. IPSE reference model.

Here, the emphasis is on the tools themselves. This
approach acknowledges a variety of tools on the mar-
ket with a variety of mechanisms for working together
and identi�es the lowest common denominator of ser-
vices for tools and support-speci�c end-user activi-
ties. The services provided and activities supported
are typically no more than what is provided by the
operating system.

An IPSE provides a common infrastructure into
which tools can be embedded. The reference model
for an IPSE is the \toaster" model shown in �gure 1
(ref. 7). This model de�nes a set of services within
a framework. The message-server network allows
communication between di�erent tools and services
in the environment. Typically, this service builds on
or extends the communications services provided by
the underlying operating system. The user interface
is typically provided by one of the emerging window
management standards such as Motif (ref. 8). Task
management, data repository, and data integration
services are provided by the IPSE. By �tting into the
\slots" of the toaster model, the tools are integrated
and can work together e�ciently.

The largest roadblock to integration is a lack of
widely accepted standards. Vendors have invested
time and money into their own integration techniques
and move slowly to discard or revamp their invest-
ment for standards that are not yet widely accepted.
The result is a host of integration \standards," very
few of which are compatible with each other. An

overview of major standardization e�orts can be
found in reference 9. Of the tool-oriented standards,
a recent standard from the Object Management
Group (OMG) has emerged with implementations
by Sun Microsystems, Inc. and Hewlett-Packard Co.
(ref. 10). Of the IPSE standards, the Common Ada
Programming Support Environment (APSE) Inter-
face Set (CAIS) (ref. 11) and the Portable Common
Tool Environment (PCTE) (ref. 12) are two stan-
dards that address the whole IPSE reference model.
The PCTE is a European Computer Manufacturers
Association (ECMA) standard tool-building frame-
work that is gaining widespread support both in
Europe and the United States.

Objectives

A primary research thrust of the Systems Ar-
chitecture Branch at Langley Research Center is to
develop the computer-aided technology for safety-
critical software and high-performance architecture
systems for advanced aircraft avionics. This work
is motivated by the belief that computer automa-
tion techniques are eminently possible through fo-
cused research on application-speci�c domains and
that these automation methods will result in signif-
icant gains in productivity, quality, and safety. To
support this research, a project was initiated to eval-
uate an open environment software infrastructure as
the framework for this design technology. This pa-
per describes the use of the PCTE version 1.5 Public
Interface Standard as implemented by Emeraude, a

2

French company. This project emphasized the Ob-
ject Management Services (OMS), by far the most
signi�cant feature of PCTE, and the tool encapsula-
tion facilities of the Emeraude environment.

The long-range goal of this work is to de�ne the
role and requirements of an open framework for de-
veloping highly integrated,
ight-critical computer
systems. Frameworks are vaguely de�ned but gen-
erally refer to environments for the communication
and integration of tools in a process (ref. 13). Ac-
commodating the entire design process is a recent
emphasis of these environments, as opposed to the
previous emphasis on the tools themselves, which
were often tools with proprietary interfaces. To bet-
ter understand the role that an open environment
can play in a tool integration context, a study was
conducted in which three existing software products
were encapsulated and used in a coordinated design
process. These tools had not previously been used
in a coordinated manner. Two of these products,
CSDL CASE (ref. 14), a computer-aided software en-
gineering design tool from the Charles Stark Draper
Laboratory, Inc., and InquisiX (ref. 15), a software
reuse tool from Software Productivity Solutions, Inc.,
are alpha-release versions. The third tool, ADAS
(ref. 16), an architecture design and analysis tool,
is a commercial-o�-the-shelf tool. The objectives of
the study were to

1. Demonstrate through a simple but realistic ex-
ample the value of an open environment in facilitat-
ing a coordinated design process; because members
of the project team did not have previous experience
with the Emeraude environment, a small demonstra-
tion project was the fastest way to confront open
environment issues in the tool integration context

2. Demonstrate the encapsulation and integration
of existing software tools through a shared, common
infrastructure; although productivity and reliability
advantages exist for building new tools in an open
environment framework, many existing tools serve
useful functions and are not likely to be replaced in
the foreseeable future

3. Identify areas for further research in the open
environments that are needed to support the devel-
opment of automated design technology

Project Description

Demonstration Context

To meet the objectives outlined for this study,
part of the study reported in reference 17 was repro-
duced and automated. That study examined the per-
formance of various architectures for large-grain data

ow parallelism. The architectures studied involved
an array of processors interconnected to a scheduler
and a work load generator. A typical architecture
is shown in �gure 2. The performance of an archi-
tecture was tested using a data
ow graph depicting
the major software processing elements and the or-
der of execution as determined by the data
ow be-
tween processing elements. Previously, the data
ow
graph was converted by hand into a textual represen-
tation that was read by the SpawnProcess com-
ponent shown in �gure 2. The hand generation of
di�erent data
ow work loads was one of the most
burdensome tasks in the original study. Although
CASE tools were available to generate these data
ow
diagrams, the outputs of the tools were not compati-
ble with the inputs to the simulation tool used in the
performance analysis. An objective of the project,
then, was to investigate the direct use of the output
of an existing CASE tool used by software designers
as input to the simulation tool used by the architec-
ture designers. Essentially, the architecture studies
would have the bene�t of using real software work
loads, although for this study, the actual work loads
de�ned in reference 17 were used.

SpawnProcess

Scheduler

Processor0

Delay 0 Delay 1

Processor1

Delay 2

Processor2 Processor3

Delay 3

Delay 4

Processor4

Delay 5

Processor5

Delay 6

Processor6

Delay 7

Processor7

Figure 2. Macro data
ow scheduler (8 processors).

An overview of the demonstration project is
shown in �gure 3. For this demonstration, the
Software Designer generates the software work
load data
ow graphs using the CSDL CASE soft-
ware design tool. These diagrams are used to gen-
erate di�erent textual representations of work loads
for input to the ADAS simulation tool. Because
many work loads could be generated for testing the

3

Design
Graph

User
Doc.

Code

InQuisiX
Library

Object-
Class

Object-
Attribute

Object-
Instance

CCCAAA SSS EEE

IIInnn QQQuuu iii sss iii XXX

AAA DDDAAA SSS

Put
Object

Catalog
Object

Search Library
Get Object

Software
Designer

Architecture
Designer

Reuse
Librarian

PPPooo rrr ttt aaabbb lll eee CCCooo mmm mmm ooo nnn TTT ooo ooo lll EEEnnn vvv iii rrr ooo nnn mmm eee nnn ttt

Workload Script

P 0 S e n d s to P 1
D U R A T IO N 2 5
P 2 i s D E L A Y E D 3 5

Data Flow Graph

Design Graph
to

Workload Script
Filter

Hyper-Cube

IIInnn QQQuuu iii sss iii XXX

Encapsulated
Tool

Encapsulated
Tool

Encapsulated
Tool

Figure 3. PCTE demonstration.

performance of proposed architectures, ideally the
work loads would be classi�ed and stored in a reuse
library. The application of the InQuisiX-reuse library
tool would further demonstrate the capabilities of the
open environment for integrating engineering tools.
After the work load information was cataloged by
the Reuse Librarian, the InQuisiX tool could be
used by the Architecture Designer to browse the
data base and select the work load with the desired
attributes to use with the ADAS tool.

Tool Set

The CASE tool used for generating the data

ow diagrams was developed by the Charles Stark
Draper Laboratory, Inc. (CSDL) under contract to
Langley Research Center. This tool is oriented to-
ward the aerospace controls engineer and can gener-
ate Ada code and documentation directly from en-
gineering block diagrams of the control algorithms.
Figure 4 shows a block diagram for a yaw-damper
algorithm consisting of �rst-order lags (FOLAG),
washout �lters (WOUT), switches (SWITCH), and
limiters (lim), which can all be retrieved from a li-
brary. As originally developed, the CSDL CASE out-
put consists of the automatically generated Ada code
and supporting documentation. The engineering di-
agrams are stored in internal libraries and are not
available for other engineering tools. One of the �rst
tasks was to specify a generic data
ow representa-
tion and to task CSDL to produce this format from

the internal representation within the CSDL CASE
tool. When this task was accomplished, the data
ow
diagrams could be used with other engineering tools.

The availability of InQuisiX, developed by Soft-
ware Productivity Solutions, Inc. under Small Busi-
ness Innovative Research (SBIR) contracts, o�ered
another dimension for study within the scope of this
project. InQuisiX can de�ne a taxonomy for a set
of objects and store and retrieve objects according
to this classi�cation scheme. Many of the features
of the classi�cation scheme of InQuisiX are available
as part of the object management facilities of PCTE.
However, InQuisiX does provide a user interface to
search the object base for those objects that match
user-speci�ed criteria. A comparable searching facil-
ity was not available in the Emeraude implementa-
tion of PCTE, so InQuisiX was selected for the study
to provide this capability. In discussions of the role
of InQuisiX for this project, it was generally felt that
the development of InQuisiX would have been greatly
simpli�ed if access to the common services provided
by PCTE were available.

ADAS is a discrete-event simulation tool mar-
keted by CADRE Technologies, Inc. This tool allows
the user to graphically de�ne a system model, run
a discrete-event simulation of the system, and view
the simulation as it progresses. Additionally, ADAS
also provides tables of the results that can be fur-
ther analyzed. This tool has proven to be e�ective

4

*

N am e: Y A W D A M P T itle : Y aw C on tro l T ype : N O N IT E R A T IV E -T R A N S F O R M

D ata F low D iag ram

CSDL CASE
Computer-Aided Software Engineering

Automated Programming
Subsystem
S ponso red B y

The NASA Langley Research Center
D eve loped B y

The Charles Stark Draper Laboratory, Inc.

Load P ro jec t F ile
S ave P ro jec t T rans fo rm

D escribe T rans fo rm
E d it S upe rio r

G ene ra te D ocum en t
E xecu te

S how F ree N odes
H ie ra rchy

S ugges tion B ox

C hoose T rans fo rm
C lea r T rans fo rm

C hange S ize
L is t In fe rio rs

G ene ra te C ode
C heck C ons is tency
D e le te T rans fo rm
E d it S igna l T ypes

Major Menu Options

S e lec t a trans fo rm
yaw -con tro l
Y A W D A M P

lim
F C A S

F O LA G
W O U T

IN T E G E R *2
IN T E G E R *4

R E A L*8
P O S IT IV E
N A T U R A L

F LO A T
IN T E G E R
M E R G E

R E F
S E T

A S IZ E
A T A N
T A N

C O S IN E
S IN E

IN C R E M E N T
D E C R E M E N T
U R A N D O M F
U R A N D O M I
G R A N D O M

M IN U S
L IM IT

F E E D B A C K
D E LA Y

S W IT C H
A G E B
A LE B

A -G R E A T E R -T H A N -B
A -E Q U A L-B

A -LE S S -T H A N -B
LO G IC A L-N O T
LO G IC A L-A N D
LO G IC A L-X O R
LO G IC A L-O R

N A T U R A L-
E X P O N E N T IA L
S Q U A R E -R O O T

A B S O LU T E -V A LU E
D IV ID E R

M U LT IP LY
S U B T R A C T

A D D E R

tau
I
d t
R

F O LA G O

tau
I
d t
R

F O LA G O

tau
I
d t
R

W O U T O

t
f
c

S W IT C H
o

D E LA
Y

*+
-

ub
 lim
lb

C A S

R B D E
G

R E S E
T
T

H

T
S

Z

K
1

T W
K
2

de lr yd -
u l

de lryd -
ll

D E LR Y D

K
3

T S F
B

F (C A S)
F o rw a rd Loop G a in

**

*

Figure 4. CSDLCASE engineering block diagram.

for measuring the performance of proposed parallel
architectures for aerospace applications (ref. 17).

Project Implementation Using PCTE

PCTE Services

Figure 5 illustrates the following major services
o�ered by the Emeraude implementation of PCTE
version 1.5:

1. The most signi�cant aspect of PCTE is the
Object Base, which is the common repository of all
data in PCTE. The Object Base is a typed, persistent
store.

2. The Metabase is that portion of the Ob-
ject Base devoted to describing the contents of the
remainder of the Object Base. In practice, the
Metabase is a collection of objects that describes the
data types of the objects in the Object Base.

3. The primary operations for accessing the Ob-
ject Base are provided by the PCTE Object Manage-
ment System (OMS). The OMS provides tools that
can create, examine, and alter objects in the Object
Base.

4. The Execution/Communication services in-
clude support for distribution of the Object Base and
for interprocess communication.

5. The Metabase Services are operations that
use the OMS to examine and update the Metabase.
Examples include operations to create new types and
to determine the type of an object.

6. Version Management Services are available for
all objects in the base.

7. Data Query Management Services allow pro-
grams to formulate searches of the Object Base.

Not all the services listed above were used in
this project. The Execution/Communication ser-
vices were largely irrelevant because the evaluation
copy of the Emeraude environment obtained for this
project was limited to a single network node. The
Data Query Management facilities currently lack an
interactive interface in the Emeraude environment,
thus appear to be relatively inaccessible. Version
Management, although critical to long-term projects,
would not have been fully exercised during this rel-
atively short project. On the other hand, the most
novel and pervasive new capability o�ered by typical
open environments is an Object Base. The PCTE
Object Base and OMS were used extensively. For this
application, Metabase services were employed toex-
tend the Metabase, which added new data type de-
scriptions in accordance with data manipulation by
the project tool set.

5

Metabase Object Base

Execution/

Communication
PCTE OMS

Metabase

Services

Version

Management
Data Query

Management

X Windows

Tool 1 Tool 2

Figure 5. PCTE services.

Tool Classes

From the viewpoint of PCTE, two important
classes of tools are presented, as illustrated in
�gure 6.

Native: Native tools are those designed and imple-
mented with speci�c PCTE support. Such tools will
ideally distribute inputs and outputs across many
OMS objects, attributes, and relations in an e�ort
to anticipate the information requirements of other
tools that may later be added to the environment. To
native tools, the OMS represents an elaborate stor-
age system supporting interobject relations.

Foreign: Foreign tools are those designed for use
in another environment such as UNIX. Such tools
expect inputs and outputs to appear in simple �les.

Foreign tools (such as UNIX tools) can be im-
ported into the Emeraude environment by a process
of encapsulation. The encapsulated tool still receives
inputs and outputs from \�les," but many of these
�les are now objects of type file (or some subtype
of file) in the Object Base. The OMS allows the
environment to record information about these �les
as attributes and relations without examining the in-
ternal �le structure. The �le objects themselves are
treated as black boxes by the Emeraude environment.

Emeraude provides two mechanisms for encapsu-
lation. The �rst is to recompile the tool, substitut-
ing the Emeraude I/O library for the \conventional"

UNIX I/O library. This substitution provides a set
of I/O operations with signatures that are identical
to the �le-handling primitives of UNIX, but that ac-
tually open, close, read, or write objects of type file
in the PCTE Object Base. The second mechanism,
which is useful for tools that receive their �le names
via their command line invocation, is to wrap a sim-
ple Emeraude shell script around the tool invocation.
Within that script, the command line parameters are
processed by a special Emeraude command to con-
vert the logical paths to �le objects into the actual
UNIX path names where the Object Base has lo-
cated the particular �le objects. Path names can
then be read and/or written using the normal UNIX
primitives.

The tool set used for this study consisted of
foreign tools. Because the source code was not
available for these tools, the second encapsulation
method was employed in this project. However,
the CSDL CASE tool, as previously mentioned, was
modi�ed by the CSDL to use internal information.
This information represented the data
ow object.
Although the encapsulation method was used with
this tool, it had some of the characteristics of a native
tool.

The OMS Type System

As noted earlier, all objects in the PCTE Object
Base are typed. The type determines

1. Attributes that describe the object

6

Encapsulated

UNIX Tool

File

Object Object

UNIX Tool

File

Native Tool

UNIX File System

PCTE Object Base

File

File

Obj

Obj

Figure 6. Integrating tools.

2. Relations (links) the object may have with
other objects

3. Whether the object has contents (i.e., can we
open and/or close it and apply read and/or write
operations to it?)

An attribute is a named value associated with an
object. Attributes can be strings or numbers. A
relation is a bidirectional link between two objects.
Each direction has a di�erent name. Both attributes
and relations can be viewed as \properties" of the
object. When that property is itself another object,
it is a relation. When the property is a simple string
and/or integer value lacking a separately addressable
identity, it is an attribute.

Types are related by inheritance, which means
that if Sub is a subtype of Super, then all attributes
and/or relations of Super are also available for ob-
jects of type Sub.

The Emeraude environment comes with a number
of prede�ned types. These types de�ne OMS analogs
of the following familiar concepts:

dir a \container" of �les and other
directories; more precisely, an object
that serves as the head of a number
of links to directories and �les

file an object that has \contents" and
can be written to and/or read
from; has attributes: owner and
modi�cation date, among others

object code a subtype of �le, intended to hold
only object code

c source a subtype of �le; to the usual �le
attributes and relations adds
links to \include" �les and other C
language-speci�c information

object the \root" of all types

Figure 7 shows the inheritance relations that re-
late the prede�ned types. The inheritance hierarchy
is important to determine the properties o�ered by
objects of any given type. For example, any object

has a name attribute; therefore, a file has a name

as well. A file has contents; therefore, so does any
c source object. On the other hand, c source ob-
jects have attributes and relations that are speci�c to
c source code and would not be applicable to gen-
eral files.

7

Figure 7. Prede�ned types: inheritance hierarchy.

Because each object is typed, the environment
and the tools running in that environment are aware
of what attributes and relations are available for any
given object. The environment can prevent the use of
inappropriate attributes and relations with an object.
Less obviously, the type system allows control of the
visibility of objects, attributes, and relations. Each
user has a working schema. The working schema
is a list of object, attribute, and relationship types
available to the user. Attempts to access an object,
attribute, or relation whose type is not in the working
schema will fail, just as if that object, attribute, or
relation did not exist. Individual users and groups
can be given or denied access to sets of types, thus
given or denied access to objects of those types.

Type Schemas

Types are grouped into Schema De�nition Sets

(SDS). A type may appear in the SDS's. As new
tools are brought into the environment, new kinds
of input/output data employed by those tools must
be described to the environment. An environmental
description is accomplished by de�ning a new schema
containing the data types needed by the new tool.

As an example of this design process, consider
the problem faced in this project of integrating the
CSDL CASE and ADAS tools. This scenario called
for software designs (data
ow diagrams) from CSDL
CASE to be combined with machine-characteristic
information to produce a work load script to drive
an ADAS simulation.

This problem suggests an initial list of new types:
a data
ow diagram, machine characteristics, and a
work load script.

On closer examination, it was determined that
CSDL CASE can represent data
ow diagrams as
directed graphs or as a text script, suggesting two
more types: dfd graph and dfd script.

The �rst step in de�ning these types was to
organize them into an inheritance hierarchy, as shown
in �gure 8.

Objects of type dfd script and dfd graph are
produced as �les by CSDL CASE; they have con-
tents (i.e., we must be able to read and write
them), so it makes sense that they should be treated
as subtypes of file. Similar arguments hold for
machine char and workload script.

The notion of a data
ow diagram (dfd) as a pos-
sible combination of graph and script is an organiza-
tional idea (for example, analogous to a directory).
As such, this
ow diagram has no contents of its own
so it cannot be a �le.

After the inheritance hierarchy has been set, re-
lations are added among the types. Relations serve
both to add information about the objects and espe-
cially to enforce certain constraints:

1. For every work load script, there can be
only one data
ow diagram and one machine-
characteristics �le.

2. The same data
ow diagram can be used to
produce many di�erent work loads (e.g., by varying
the machine characteristics and/or number of con-
current tasks).

3. The same machine characteristics can be used
to produce many di�erent work loads (e.g., by vary-
ing the software data
ow and/or number of concur-
rent tasks).

Figure 8. Project inheritance hierarchy.

8

4. For any data
ow diagram, there can be at
most one CSDL CASE graph and at most one CSDL
CASE script.

The �rst three constraints can be seen in the
schema shown in �gure 9. In this �gure, the boxes
denote types, and the triangles and diamonds denote
relations that may link objects of the indicated type.
A diamond is used when a name is assigned to each
direction of the relation, and a triangle is used when
a name is given to only one of the two directions.
Thus, for example, from any work load object, one
can follow a .script link to �nd the corresponding
work load script, and from a work load script object
one can follow a .script for link back to its work
load.

Figure 9. Work load schema de�nition set.

Links that end in a single arrowhead denote a
many-to-one link. Links ending in a double arrow-
head denote a many-to-many link. Thus it is appar-
ent from �gure 9 that a given work load has a single
data
ow diagram (via the .flow link); however, each
data
ow diagram can contribute to many work loads
(by way of the .flow for link). When both direc-
tions of a relation are many to one, the combination
is equivalent to a one-to-one relationship. Thus, the
relation between work loads and work load scripts is
one to one.

The fourth restriction is captured in the schema
shown in �gure 10, which also illustrates an early
decision that the environment might contain many
di�erent tools capable of building and manipulating
data
ow diagrams such as both the CSDL CASE
and ADAS tools.

The �nal step in developing schemas for describ-
ing tool interactions is to \decorate" the object types
with attributes to help describe the objects and to
make internal information available to other tools.

Some of the attributes we employed for workload

and dfd objects were

name|an identi�er inherited from the root type
object

topology|a name describing the general shape
of a data
ow graph

num tasks|the number of duplicate tasks, each
a complete instance of the software data
ow diagram

width, max path length,: : :|various attrib-
utes describing the shape and properties of the dfd

graph

Note that information such as the dfd and ma-
chine characteristics used with each work load is al-
ready available, but as relations, not attributes.

By following relationship links and examining the
attributes of the objects encountered, a variety of
searches and retrievals can be performed. Emeraude
has query and searching primitives (the Data Query
Management Services), but these primitives are pro-
vided as a library of C routines. No interactive tool
except a basic OMS browser is currently provided.
InQuisiX, which was used for this purpose, is a reuse
librarian tool that describes library units in terms of
attributes and permits interactive searches for units
that satisfy various constraints on those attributes.
Many attributes de�ned for work loads were chosen
to illustrate the processes of registering a work load
in a reuse library and of permitting later searches
and retrievals of those work loads. In such a situ-
ation, we would anticipate that some, but not all,
of the useful information about the work load would
be assigned by the tools that created the work load.
This assignment by the tools is true of (1) the name,
(2) the links to data
ow diagram, work load script,
and machine-characteristics �les, and (3) the num-
ber of concurrent tasks. Other attributes, primarily
those concerned with documentation, would be �lled
in by the reuse librarian when the object is cataloged
for general use.

Thus, in this case, it was necessary for PCTE
attribute values to be sent to the InQuisiX library,
and for any changes to object attributes made by
the InQuisiX librarian to be re
ected later as PCTE
attributes.

Summary of Experience With Emeraude

PCTE Version 1.5

The project was undertaken over a 10-week pe-
riod from June 1, 1992 to August 7, 1992. This
period was chosen to correspond with the summer
on-site performance period of the JOint VEntures
(JOVE) program funded by Marshall Space Flight

9

Figure 10. Set for dfd schema de�nition.

Center, which sponsored one project member. The
project, which was successfully completed within the
allotted time, consisted of four major tasks:

1. Education (2 weeks): This task included in-
stalling and studying the capabilities of the Emer-
aude environment. Additionally, the target tool set
was unfamiliar to the project team; therefore, part of
this time was devoted to studying the capabilities of
the two alpha-release tools and the commercial tool.

2. Demonstration de�nition (3 weeks): During
this time the functions to be demonstrated (software
reuse, CASE, and architecture performance evalu-
ation) were re�ned, and the demonstration process
was de�ned. These re�nements involved evaluat-
ing the data integration possibilities of the target
tool set. The need for a CASE tool modi�cation
was recognized, and the speci�c modi�cation was de-
�ned. This modi�cation was implemented in a very
short time by the developers of the CASE tool at the
Charles Stark Draper Laboratory, Inc.

3. Implementation (3 weeks): The PCTE object
types, relations, and schemas were developed with
the tool encapsulation scripts and �lters.

4. Evaluation (2 weeks): During the last 2 weeks,
the coordinated design process, as represented in
�gure 3, was demonstrated. The project was also
documented during this time.

The fact that this project was completed within
the 10-week period indicates the relative ease with

which foreign tools could be encapsulated in the
Emeraude implementation of PCTE. The facility of
this e�ort was partly due to the orientation of the
environment toward UNIX and the project team's
knowledge of UNIX.

The current PCTE standard only supports large-
grain data modeling at the object level. The internal
structure of objects is treated as a black box by
PCTE; thus, tools designed for manipulation of the
contents of the objects must agree on format outside
the modeling capabilities of PCTE. Nevertheless,
the ability to model objects at the large-grain level
and to de�ne the relationships between them was
valuable. The development of an explicit object
data model clari�ed the role of each tool in the
project's engineering development process and the
relationships between the tools. This model also
enforced consistency and precision in the use of the
information de�ned and manipulated by the tools.
Although PCTE does not support the encapsulation
of object types with behavior, it was not limiting for
this particular project.

Additionally, the availability of an external ASCII
format for the internal contents of the data
ow
diagrams and the work load scripts allowed some �ne-
grain data manipulation through the development
of simple �lter programs that translated between
formats. Most of this project was developed using
the facilities of the Emeraude Shell Programming

10

Language and Make�le facility. Programs in C were
written only for the �ne-grain data �ltering.

Because the three tools used in this project were
developed by three di�erent vendors with di�erent
window systems and approaches to user-interface
management, each tool presented a distinct interface
to its services. The availability of an open environ-
ment with infrastructure support for de�ning a user
interface would contribute greatly toward providing
a consistent \look and feel" for each tool.

One major advantage of the PCTE Object Man-
agement System is support for transaction control.
The user could de�ne the beginning of an activity,
manipulate a set of objects, then abort the activ-
ity and roll the system back to the original state.
This facility eased the tasks of learning PCTE and
correcting the software developed for the project be-
cause the Object Base could always be returned to a
consistent state. In fact, part of the demonstration
was performed as a transaction activity, then rolled
back to return the system to the same starting state
for subsequent demonstrations.

Research Issues

The study also considered several areas of future
research, which include object management support
with programming language interfaces, development
environments for concurrent systems, and process
modeling.

Object Base Technology

The object-oriented data base (OODB) is a rel-
atively new class of data storage that has not yet
matured to the same degree as more conventional
data base forms. Open issues a�ecting both the fea-
tures and performance of OODB's include: type evo-
lution, scale and granularity, inheritance of behavior,
and e�ciency. Many of these issues are discussed in
references 18 and 19. The development of appropri-
ate type systems for persistent object management
in particular is complicated by the need to map per-
sistent object types into types that can be processed
by a variety of conventional programming languages;
that is, the purpose is to achieve an interoperable type
system. Most prior e�orts to achieve interoperability
have been directed at overcoming di�erences in ma-
chine and/or language representation of \equivalent"
data structures. Approaches have included

1. Imposing a single data model: An example is
the widespread adoption of the IEEE standard for

oating-point number representation. By encourag-
ing all vendors to comply with this model, inter-

operability of this data form is achieved. Unfor-
tunately, by its nature this approach can only be
achieved for a �nite number of data structures.

2. Imposing a unifying data model: Data descrip-
tion languages such as the Interface Description Lan-
guage (IDL) provide a uniform model for construc-
tion of new compound data structures from a small
set of primitives (ref. 20).

The combination of single data models for prim-
itives (for example, numbers and characters) and a
uni�ed model for construction of compound struc-
tures is an important step toward achieving inter-
operability. There is another level, however, at which
it is often more convenient to consider the issue: the
level of the data abstraction implemented by a par-
ticular representation. Representation-level schemes
provide only minimal assurance that a given data
structure will be manipulated in an acceptable man-
ner by users from distinct environments. In other
words, the data are transferred, but the enforcement
of the abstraction captured by that data is left to
the good will and capabilities of the programmers in
each environment.

Programming Language Interfaces to

Persistent Data

Conventional data base languages have long been
criticized for a lack of programming power and ex-
pressiveness as well as being far behind the state
of the art in incorporating software engineering con-
cepts into language design. On the other hand, tra-
ditional programming languages o�er no support for
persistence beyond the idea of a \�le." For this rea-
son, interest has been growing in \persistent pro-
gramming" languages that merge the expressiveness
of modern programming languages with support for
persistent object stores (ref. 21).

Most persistent programming languages organize
persistent data into special \bulk" data types such
as sets or relations (refs. 22 and 23). A smaller
number of these languages have attempted to merge
persistence support directly into a traditional lan-
guage with little or no visible change to the lan-
guage (ref. 24). Curiously, this minimally intrusive
approach has seldom been employed with languages
that o�er rich support for data abstraction. An ex-
ception is Zeil's ALEPH project which adds persis-
tence to Ada (ref. 25 and work done for Langley
under NASA grant NAG1-439 and National Science
Foundation grant CCR-8902918 at Old Dominion
University Department of Computer Science). The
ALEPH language preprocessor currently under devel-
opment can serve as a vehicle for experimentation

11

and distribution of these protocols by providing a
simple interface to persistence and garbage collection
for Ada programmers.

Environments for Concurrent Systems

Concurrent software design di�ers from sequen-
tial software design in several signi�cant respects. A
major di�erence between techniques involves the co-
ordination between processes. In a concurrent sys-
tem, processes must communicate, and the seman-
tics of such interprocess communication can easily
be utilized incorrectly by the implementation. The
results are concurrency anomalies such as deadlock
or corruption of shared data. The construction of
concurrent system design tools requires a model of
concurrent systems that lends itself to concurrent
system design and exploitation of that model in a
speci�cation language that captures the model prop-
erties. Early work on models of concurrent systems
emphasized avoidance of system execution anomalies
(for example, deadlock) and guaranteed the correct-
ness of shared-data access. Recent work focuses more
on e�cient forms of concurrency that can be derived
by rede�ning correctness properties and allowing for
varied and more complex interleaving of shared data
operations. Early work focused on enforcing correct-
ness criteria at the process level rather than the in-
dividual operation level; recent work emphasizes in-
dividual operations.

One model, the general process model (GPM),
provides a framework for the consideration of both
system syntax (that is, the arbitrary forms of data
objects and accesses) and semantics (that is, the
meaning and e�ect of individual data objects and
manipulations). This model is the basis for the devel-
opment of environments for designing and analyzing
concurrent systems. (For example, see ref. 26.)

Process Modeling and Management

The validation and veri�cation of mission-critical
computer systems must encompass not only the arti-
facts produced (for example, speci�cations, code, and
designs) but also the process used to develop those
artifacts. Process modeling refers to the de�nition of
the set of activities that comprises the development
process and the interrelationship of these activities.
Process management refers to the use of a process
model in controlling, measuring, and certifying the
dynamics of development. The importance of process
modeling for the development of complex computer
systems has been recognized for some time (ref. 27),

but interest in this area has increased rapidly over
the past few years (refs. 7 and 28).

An open environment can play a signi�cant role
in the management, enforcement, and documentation
of the development process. Because a process model
controls the set of activities that makes up the engi-
neering development, this process is best embedded
in a uni�ed development environment in which all
access to development resources can be monitored,
recorded, and controlled.

Conclusions

The development and operation of complex com-
puter systems will require computer-aided support
throughout the system life cycle. The proliferation of
computer-aided software engineering systems in the
past decade is a testimony to the widespread need for
automation technologies to support computer system
development. Although the speci�c set of technolo-
gies, tools, and methodologies varies with applica-
tion and state of practice, it is possible to identify an
underlying infrastructure that provides the basic set
of services necessary to support a uni�ed system de-
velopment environment. An environment such as the
Portable Common Tool Environment (PCTE) pro-
vides this underlying set of services.

This study investigated the role that an open en-
vironment could play in the development of mission-
critical computer systems. A conceptual design
scenario for the performance evaluation of parallel
computer architectures that involved three diverse
software tools was proposed. The tools were inte-
grated using the emerging PCTE standard, and the
design scenario was successfully demonstrated.

The study demonstrated the feasibility of inte-
grating a set of independently developed tools into
a design environment and suggests that the current
state of open environment standards, as represented
by PCTE version 1.5, is su�ciently mature to war-
rant consideration in future implementations. This
study also suggested future tool development should
be undertaken within an open environment context
and that existing tools should be migrated into that
environment. This strategy would provide many op-
portunities for the integration of existing and pro-
posed capabilities into a uni�ed and manageable de-
velopment process.

NASALangley Research Center

Hampton, VA 23681-0001

June 30, 1993

12

References

1. Grantham, William D.; Person, Lee H., Jr.; Brown,

Philip W.; Becker, Lawrence E.; Hunt, George E.;

Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.;

and Cokeley, R.: Handling Qualities of a Wide-Body

Transport Aircraft Utilizing Pitch Active Control Systems
(PACS) for Relaxed Static Stability Application. NASA

TP-2482, 1985.

2. Cronin, M. J.; Hays, A. P.; Green, F. B.;

Radovcich, N. A.; Helsley, C.W.; andRutchik, W. L.: In-

tegrated Digital/Electric Aircraft Concepts Study. NASA

CR-3841, 1985.

3. Waterman, Hugh E.: FAA's Certi�cation Position on

Advanced Avionics. Astronaut. & Aeronaut., vol. 16,

no. 5, May 1978, pp. 49{51.

4. Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Jenkins,

James; Smith, Paul; DiBattista, John; De Paula, Ramon;

Hunter, Paul; and Lavery, David: NASA Information

Sciences and Human Factors Program|Annual Report,

1990. NASA TM-4291, 1991.

5. Meissner, C. W., Jr.; Dunham, J. R.; and Crim, G., eds.:

NASA-LaRC Flight-Critical Digital Systems Technology

Workshop. NASACP-10028, 1989.

6. Wasserman, Anthony I.: Tool Integration inSoftware En-

gineering Environment. Software Engineering Environ-

ments, F. Long, ed., Volume 467ofLectureNotes in Com-
puter Science, Springer-Verlag, 1989, pp. 137{149.

7. Reference Model for Frameworks of Software Engineer-
ing Environments. NIST SP-500-201 (ECMA TR/55,

2nd ed.), National Inst. of Standards and Technology,

Dec. 1991. (Available fromNTIS as PB92 158 328.)

8. Open Software Foundation: OSF/Motif Programmer's

Guide. Prentice-Hall, c.1990.

9. Zarrella, Paul F.: CASE Tool Integration and Stan-
dardization. CMU/SEI-90-TR-14 (Contract F19628-90-

C-0003), Carnegie-Mellon Univ., Dec. 1990. (Available

fromDTIC asAD 235 640.)

10. The Common Object Request Broker: Architecture and

Speci�cation. OMG Doc. No. 91.8.1, Digital Equipment

Corp., Hewlett-Packard Co., HyperDesk Corp., NCR

Corp., ObjectDesign, Inc., SunSoft, Inc., c.1991.

11. Military Standard|CommonADAProgramming Support
Environment (APSE) Interface Set (CAIS), (RevisionA),

Volumes I{IV. MIL-STD-1838A, Apr. 6, 1989. (Super-

ceding DOD-STD-1838, Oct. 9, 1986.)

12. Boudier, Gerard; Gallo, Ferdinando; Minot, Regis; and

Thomas, Ian: An Overview of PCTE and PCTE+. Pro-

ceedings of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development

Environments, Peter Henderson, ed., ACM Press, 1988,

pp. 248{257.

13. Schulz, Steven E.: Frameworks: Debunking the Myths.

Electron. Design, vol. 39, no. 6, Aug. 22, 1991, pp. 71{80.

14. Walker, Carrie K.; and Turkovich, John J.: Computer-

Aided Software Engineering|An Approach to Real-

Time Software Development. A Collection of Technical
Papers|Part 1, AIAA 7th Computers in AerospaceCon-

ference, Oct. 1989, pp. 10{19. (Available as AIAA-89-

2961.)

15. InQuisiXTM|Software Reuse Library System. Software

Productivity Solutions, Inc., c.1991.

16. ADAS|An Architecture Design and Assessment System

for Electronic Systems Synthesis and Analysis|User's
Manual, Version 2.5. CadreTechnologies Inc., c.1988.

17. Young, Steven D.; and Wills, Robert W.: Perfor-
mance Analysis of a Large-Grain Data Flow Scheduling

Paradigm. NASATP-3323, 1993.

18. Bernstein, Philip A.: Database SystemSupport for Soft-

ware Engineering|AnExtendedAbstract. Proceedings|

9th International Conference on Software Engineering,
IEEE Catalog No. 87CH2432-3, IEEE Computer Soc.

Press, 1987, pp. 166{178.

19. Penedo, Maria H.; Ploedereder, Erhard; and Thomas,

Ian: Object Management Issues for Software Engineer-

ing Environments|Workshop Report. Proceedings of the
ACMSIGSOFT/SIGPLANSoftwareEngineering Sympo-

sium on Practical Software Development Environments,

Peter Henderson, ed., ACMPress, 1988, pp. 226{234.

20. Lamb, David Alex: IDL: Sharing Intermediate Represen-

tations. ACM Trans. Program. Lang. & Syst., vol. 9,
no. 3, July 1987, pp. 297{318.

21. Atkinson, Malcolm P.; and Buneman, O. Peter: Types

and Persistence in Database Programming Languages.

ACM Comput. Surv., vol. 19, no. 2, June 1987,

pp. 105{190.

22. Sutton, StanleyM., Jr.: Appla/A: APrototype Language

for Software-Process Programming. Ph.D. Diss., Univ. of

Colorado, July 1990.

23. Schmidt, JoachimW.: Some High Level Language Con-

structs for Dataof Type Relation. ACMTrans. Database

Syst., vol. 2, no. 3, Sept. 1977, pp. 247{261.

24. Cockshott, W. Paul: PS-ALGOL Implementations: Ap-

plications in Persistent Object Oriented Programming.
Ellis Horwood Ltd., 1990.

25. Zeil, Steven J.: Adding Persistence and Garbage Collec-

tion Within ADA. Proceedings of the Ninth Annual Na-

tional Conference on ADA Technology, ANCOST, Inc.,

1991, pp. 80{86.

13

26. Jipping, Michael J.; and Ford, Ray: Predicting Perfor-

mance of Concurrency Control Designs. Proceedings of

the 1987 ACM SIGMETRICS Conference on Measure-

ment and Modeling of Computer Systems, ACM Press,

1987, pp. 132{142.

27. Osterweil, Leon: Software Processes Are Software Too.

Proceedings|9th International Conference on Software

Engineering, IEEECatalog No. 87CH2432-3, IEEECom-

puter Soc. Press, 1987, pp. 2{13.

28. Wild, Chris; and Maly, Kurt: Software Life Cycle

Support|Decision Based Software Development. Algo-

rithms, Software, Architecture|Information Processing

92, Volume I, J. VanLeeuwen, ed., Elsevier Science Publ.,

1992, pp. 72{78.

14

Figure 1. IPSE reference model.

Figure 2. Macro data
ow scheduler (8 processors).

Figure 3. PCTE demonstration.

Figure 4. CSDL CASE engineering block diagram.

Figure 5. PCTE services.

Figure 6. Integrating tools.

Figure 7. Predi�ned types: inheritance hierarchy.

Figure 8. Project inheritance hierarchy.

Figure 9. Work load schema de�nition set.

1

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Technical Memorandum

4. TITLE AND SUBTITLE

Open Environments To Support Systems Engineering Tool
Integration: A Study Using the Portable Common Tool
Environment (PCTE)

6. AUTHOR(S)

Dave E. Eckhardt, Jr., Michael J. Jipping, Chris J. Wild, Steven J. Zeil,
and Cathy C. Roberts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-64-50-05

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17202

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-4489

11. SUPPLEMENTARY NOTES

Eckhardt: Langley Research Center, Hampton, VA; Jipping: Hope College, Holland, MI; Wild and Zeil: Old
Dominion University, Norfolk, VA.; Roberts: ICASE, Langley Research Center, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE)
Public Interface Standard is presented. Over a 10-week time frame, three existing software products were
encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard.
The software products used were a computer-aided software engineering (CASE) design tool, a software reuse
tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a
coordinated design process in the Emeraude environment. This paper describes the project and the features of
PCTE used, summarizes experience with the use of Emeraude environment over the project time frame, and
addresses several related areas for future research.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Open environments; Software environments; Portable Common Tool Environment
(PCTE)

15

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

